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Abstract

Capturing appearance of material with respect to il-
lumination and viewing directions is crucial to achieve
realistic visual experience in virtual environments. The
capturing process is time demanding or requires a spe-
cific shape of the captured material. Therefore, we pro-
pose a method of such a data reconstruction from very
sparse measurements, whose placement allows for con-
tinuous and fast acquisition, from which can benefit fu-
ture acquisition setups. The proposed approach was
tested on a number of view- and illumination- depen-
dent samples and showed a promising performance in
terms of whole data-space reconstruction speed and vi-
sual quality.

1 Introduction

Although view- and illumination-dependent data are
due to their ability to digitally represent realism of ma-
terial appearance demanded in many applications, their
measurement is costly and time consuming. The stan-
dard acquisition procedures of such data require either
time consuming measurement or require specific shape
of a measured sample [3, 4]. A bidirectional reflectance
distribution function (BRDF) is one example of such
data. BRDF describes distribution of energy reflected to
a viewing direction when illuminated from a specific di-
rection.However, it imposes restrictions on reciprocity
and energy conservation. More general view and illu-
mination data is an apparent BRDF (ABRDF), which
can be obtained by measuring local effects in rough
material structure (accounting for occlusions, masking,
subsurface scattering) and thus do not generally ful-
fill these restrictions. If we process individual color
channels separately, the ABRDF can be represented by
a four-dimensional function ABRDF (θi, ϕi, θv, ϕv).
ABRDF can be considered as the most general data rep-
resentation of a reflectance of opaque materials depen-
dent on local illumination I and view V. Its typical
parameterization by elevation θ and azimuthal ϕ angles

Figure 1. Data parameterization.

[8] is shown in Fig. 1. Highlighted rectangular area on
the right represents toroidal subspace with constant ele-
vations θi/θv but varying ϕi/ϕv .

Although there are techniques available for BRDF
reconstruction from sparse data by taking several im-
ages of known geometry from different illumina-
tion/viewing directions [9, 2], we are not aware of any
work that would allow full ABRDF space reconstruc-
tion from predefined intuitively obtainable sparse sam-
ples. In this paper we propose a novel method of
ABRDF reconstruction based on a set of sparse sam-
ples.

Main motivation of our work is an accurate restora-
tion of whole ABRDF space, from such sparse samples
that can be measured quickly and intuitively (unlike a
uniform hemisphere sampling) without need of an ex-
pensive conventional measurement setups. Contrary to
parametric BRDF models, e.g., [5] the method do not
have any data restrictions and require considerably less
input samples to reconstruct whole ABRDF.

The paper is further structured as follows. Section 2
explains principle of the proposed method. Section 3
shows results of the performed experiments, while Sec-
tion 4 concludes the papers.

2 The Reconstruction Method

A principle of the proposed method is explained in
Fig. 2. Firstly, the sparse samples of the material’s
ABRDF (a) are measured at predefined locations (az-
imuthal angles) (b). Then four ABRDF subspaces are
reconstructed from values of the slices (c), and finally
the remaining values are interpolated (d).
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Figure 2. An example of ABRDF re-
construction: (a) original, (b) sparse-
sampling by 8 slices, (c) reconstructions
of elevations where the slices were mea-
sured, (d) missing data interpolation.

1. Acquisition of slices
In the first step, a small subset of ABRDF values is
measured with the intent od capturing as much informa-
tion about material reflectance behavior as possible. We
selected such illumination/view azimuthal angles that
form a couple of perpendicular slices in a space of il-
lumination/view azimuthal angles ϕi/ϕv (see Fig. 3-a).
Due to this selection, the slices are orthogonal to the
most prominent features of a majority of the materi-
als: a specular reflection and an anisotropic reflection
(see the first row in Fig. 5). These features are often
constant in the direction perpendicular to the slices and
thus can be reliably represented by the marginal values
of the slices. The slice aligned with the direction of the
specular highlights is called axial slice sA (red), i.e.,
ϕi−ϕv = α holds for azimuthal angles (where α = 15
to avoids the same location of camera and light). The
axial slice records the material’s anisotropic properties
(mutual position of light and camera is fixed while the
sample rotates), i.e., for isotropic samples it is almost a
constant value. The slice perpendicular to the highlights
is called diagonal slice sD (blue), i.e., ϕi+ϕv = 2π+α
holds for azimuthal angles. The diagonal slice captures
the shape of the specular peaks (light and camera travel
in mutually opposite directions over the sample). The
slices are measured from ABRDF B (Fig. 3-a) as

sA(ϕi) = B(θi, θv, ϕi, ϕv = ϕi − α) , (1)
sD(ϕv) = B(θi, θv, ϕi = 2π − ϕv + α,ϕv) .

An example of measurement of the slices from ABRDF
data at fixed elevations θi/θv is shown in Fig. 3-a,b.

2. Reconstruction from slices
ABRDF toroidal subspace reconstruction is performed
for elevation angles at which the slices were captured
and can be explained as a combination of two slices
(i.e., sets of marginal values) as shown in Fig. 3. The
reconstruction of point B̂ in ABRDF subspace starts as
a sum of values from the slices.

v(ϕi, ϕv) = sA(ϕi,R) + sD(ϕv,R) , (2)

Figure 3. Reconstruction of BRDF values
from two slices: (a) original data with
slices placements, (b) data profiles in the
slices, (c) reconstruction from slices (π4
rotated), (d) final reconstruction.[
ϕi,R
ϕv,R

]
=

[
cosπ/4 − sinπ/4
sinπ/4 cosπ/4

] [
ϕi
ϕv

]
.(3)

Note that azimuths ϕi, ϕv had to be rotated for π/4
(Fig. 3-c) to account for the slant of slices with respect
to the ϕi, ϕv coordinate system (Fig. 3-a). As sum of
slices (2) changes a dynamic range, the summed value
v is mapped back to a dynamic range of original slices

B̂(θi, θv, ϕi, ϕv) = v(ϕi, ϕv) · (M −m) +m , (4)
m = min(sA ∪ sD) M = max(sA ∪ sD) .

Since the axial slice always has a constant value for
isotropic samples, the slices do not have to be combined
and reconstruction can be performed using the diagonal
slice alone as

B̂(θi, θv, ϕi, ϕv) = sD(ϕv,R). (5)

3. Interpolation of missing values
At this point, the four ABRDF subspaces have been re-
constructed as shown in Fig. 2-c. These subspaces cor-
respond to elevation angles θi/θv at which the slices
were taken/measured (to cover the most of the ele-
vations we used 30o/30o, 30o/75o, 75o/30o, 75o/75o).
However, the data for the remaining elevations are still
unknown and must to be estimated. The BRDF para-
metric models, e.g., [5], cannot be used to solve this
problem as they impose restrictions on data properties
(reciprocity, energy conservation, etc.), require many
more samples, lengthy fitting, and depend on initial
values. We tried to fit measured samples using the
anisotropic parametric BRDF model, however we were
unable to find stable parameters providing any reason-
able fitting for most of the tested ABRDs. There-
fore, the interpolation was performed by means four-
dimensional radial basis functions [6] separately in each
color channel. We tested several parameterizations of il-
lumination and viewing directions, e.g. [θi, φi, θv, φv],
[θh, φh, θd, φd] from [7], and finally used ”onion” pa-
rameterization according to [1] applied to both illumi-
nation and view directions [αi, βi, αv, βv]. This param-
eterization has shown the lowest reconstruction error
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sample08 sample09 sample11 sample13 sample15 sample20 sample29 sample32 sample37 sample48

14.2/27.3/19.4 10.3/17.4/23.3 7.8/10.5/27.7 11.3/16.8/23.7 10.8/22.2/21.2
6.1/13.4/25.6 5.5/9.8/28.4 6.9/8.2/29.9 6.5/9.0/29.1 6.4/11.6/26.9

Figure 4. Comparison of MERL isotropic BRDFs (the first row), with their reconstruction from
the slices (the second row). Below are the difference values in CIE ∆E/ RMSE/ PSNR.

due to specular highlights alignments near 0 value of
parameter βi. After the interpolation all missing values
for arbitrary directions are filled (Fig. 2-d).

3 Tests and Results

In this section we show results of experiments with
isotropic and anisotropic BRDF datasets.

First, we tested our method on reconstruction of 55
isotropic BRDF samples (resampled to 81 × 81 di-
rections) from the MERL BRDF database [3]. Ex-
ample results of ten reconstructed BRDFs with corre-
sponding visualization on a sphere are shown in Fig. 4.
As the BRDFs are isotropic, their axial slices are al-
ways constant; therefore the reconstruction was per-
formed using only diagonal slices. The advantage of
isotropic reconstruction is that half as many slices sD
have to be obtained (in our case, 102 samples instead
of 204 needed for anisotropic data). Mean reconstruc-
tion errors of all 55 BRDFs (8bits/channel) were: CIE
∆E=9.1, RMSE=15.7, and PSNR= 24.9.

In the second experiment we used nine bidirectional
texture function (BTF) samples (eight from Bonn Uni-
versity BTF database [8]1 and one from Volumetric Sur-
face Texture Database2) in our experiments (aluminum
profile, corduroy, dark and light fabrics, dark and light
leatherettes, lacquered wood, knitted wool, and Lego2).
Their angular resolution was 81 × 81 illumination and
view directions distributed uniformly over the hemi-
sphere (Fig. 1). The BTF samples represent spatially

1http://btf.cs.uni-bonn.de/
2http://vision.ucsd.edu/kriegman-grp/research/vst/

varying ABRDF and due to their rough structure, ex-
hibit strong anisotropic effects caused by occlusions,
masking, subsurface scattering and therefore represent
a challenging dataset to test the proposed method. We
averaged all BTF pixels to obtain average ABRDF. Ex-
amples of ABRDF subspace reconstruction from two
slices are shown in Fig. 5 and prove the ability of the
proposed approach to represent a variety of anisotropic
materials.

Figure 5. Comparison of the material’s
ABRDF toroidal subset at elevation 75o
(the first row), with its reconstruction from
the slices (the second row).

The results of complete reconstruction of original
ABRDFs from 204 sparse samples again with sphere
visualizations are shown in Fig. 6, together with recon-
struction errors in terms of CIE ∆E, RMSE, PSNR.
Generally, the proposed model provides promising re-
construction even of such challenging datasets.

To sum up, for angular resolution 81 × 81 = 6561
directions of original ABRDF only 102 samples for
isotropic and 204 samples for anisotropic dataset were
used to obtain sufficient data for reconstruction. Al-
though this represents compression ratio of original data
≈1:32, the main advantage is the reconstruction of the
data that allow arbitrarily dense directional sampling of
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alu corduroy fabrics d. fabrics l. leather d. leather l. Lego wood wool

12.3/20.0/22.2 17.2/21.4/21.5 8.2/8.7/29.3 10.5/12.2/26.5 8.5/11.1/27.2 8.1/10.9/27.4 10.4/12.4/26.3 14.0/22.4/21.2 9.3/12.3/26.4

Figure 6. Comparison of the material’s ABRDF (the first row), with reconstruction and interpo-
lation from slices (the second row). Below are the difference values in CIE ∆E/ RMSE/ PSNR.

ABRDF even for a majority of originally unmeasured
directions. Reconstruction and interpolation of single
ABRDF from the slices is very fast and takes ≈1 sec-
ond on Intel Xeon 2.67GHz (using 3 cores).

4 Conclusions

A novel reconstruction model of view- and
illumination-dependent material appearance from very
sparse data is proposed. It uses intuitive continuous
sparse sampling of material appearance: rotation of the
sample below fixed light and sensor, and mutually op-
posite movement of the light and sensor with regards to
the sample. The model does not impose any restrictions
on data and is capable of reconstruction anisotropic
non-reciprocal ABRDF data without limitation of input
dynamic range. Additionally, due to the final interpo-
lation step it allows arbitrary dense angular modeling
of original data. We tested isotropic and anisotropic
BRDFs of rough surfaces with encouraging results. We
can conclude that the method allows very promising ap-
proximation of material appearance given the extremely
sparse dataset (204 samples). In our future work we
would like to extend and test the sparse reconstruction
to handle also spatially varying data, i.e., SVBRDF and
BTF. We believe that this result will contribute to future
development of simple and cheap acquisition setups of
illumination- and view-dependent data.
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